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Abstract

Since 2005, black-tailed prairie dogs (Cynomys ludovicianus) have been collected for use as 

research animals from field sites in Kansas, Colorado, and Texas. In January of 2012, Giardia 

trophozoites were identified by histology, thin-section electron microscopy, and 

immunofluorescent staining in the lumen of the small intestine and colon of a prairie dog 

euthanized because of extreme weight loss. With giardiasis suspected as the cause of weight loss, 

a survey of Giardia duodenalis in the laboratory colony of prairie dogs was initiated. Direct 

immunofluorescent testing of feces revealed active shedding of Giardia cysts in 40% (n = 60) of 

animals held in the vivarium. All tested fecal samples (n = 29) from animals in another holding 

facility where the index case originated were PCR positive for G. duodenalis with assemblages A 

and B identified from sequencing triosephosphate isomerase (tpi), glutamate dehydrogenase 

(gdh), and β-giardin (bg) genes. Both assemblages are considered zoonotic, thus the parasites in 

prairie dogs are potential human pathogens and indicate prairie dogs as a possible wildlife 

reservoir or the victims of pathogen spill-over. Molecular testing for other protozoan 

gastrointestinal parasites revealed no Cryptosporidium infections but identified a host-adapted 

Enterocytozoon bieneusi genotype group.
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1. Introduction

The black-tailed prairie dog, Cynomys ludovicianus, is a common rodent of the family 

Sciuridae in the Great Plains region of North America and is often found in urban 

landscapes (Morse et al., 2012). Prairie dogs are susceptible to a number of diseases, 

including some potentially acquired from introduced and peri-domestic animals in their 

natural and domestic habitats (Landolfi et al., 2003; Levine and Ivens, 1988; Stapp et al., 

2009). In 2005, a colony of black-tailed prairie dogs was housed at the Centers for Disease 

Control and Prevention (CDC) for use in monkey-pox studies. Previously, animals were 

collected from areas of Kansas, Colorado, and Texas. In 2012, morbidity and mortality was 

observed in the laboratory colony, with weight loss and loose stool being the major clinical 

signs. Several enteric parasites were suspected potential causes of disease post-necropsy of 

the index case, including Giardia, Cryptosporidium, and Enterocytozoon.

Giardia, Cryptosporidium, and Enterocytozoon are intestinal protozoan and fungal parasites 

that infect animals via direct and indirect transmission cycles. The infective stage of each is 

environmentally resistant, which allows for multiple possible transmission routes, including 

person-to-person, animal-to-person, water-borne, and food-borne. Since multiple species can 

infect a very broad host range that includes domestic animals, wildlife, and humans, 

advanced molecular genotyping tools must be used to distinguish species and genotypes 

(Appelbee et al., 2005; Feng and Xiao, 2011; Santin and Fayer, 2011; Xiao, 2010). The 

current study describes the index case and utilizes molecular tools to investigate these 

enteric pathogens within a captive prairie dog population.

2. Materials and methods

2.1. Collection sites, animal housing, and sampling

Prairie dogs were supplied by private vendors that collected individuals from four locations 

at various time points since 2005 (2005: Kansas; 2008: Colorado; 2009: Texas; 2011: 

previous location and a city farm irrigated with treated waste water, Texas). All animals 

received a medical examination with a standard fecal exam that does not routinely include 

Giardia and are treated with one dose of 0.2–0.4 mg/kg subcutaneous Ivermectin upon 

arrival to the CDC. In an off-site facility, animals are housed in large groups (~40–60 

animals/group). When needed, animals were moved to the vivarium on-site and grouped in 

two rooms with no contact and staggered holding times (room A: <1 year hold; room B: >1 

year hold). At the time of the index case, room A contained 35 individuals from the 2011 

group and room B contained 29 individuals from the 2009 group. The 2009 group on-site 

(room B) had no history of exposure to the 2011 animals (room A) at either the on-site or 

off-site location. The 2011 animals (room A) had previously been housed with their cohort 

in the off-site location. All animals were housed and treated at the CDC facilities under an 

IACUC-approved protocol.
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Following the index case, fresh fecal samples were taken from 29 animals from three 

housing groups at the off-site holding facility for PCR analysis. Additionally, fresh stool 

samples were taken from all but four animals housed in the vivarium (2011 (Room A) n = 

33; 2009 (Room B) n = 27), immediately placed in 10% buffered formalin, and analyzed 

using an immunofluorescent assay. Stool from these vivarium animals were not tested by 

PCR analysis.

2.2. Pathology of index case

In January of 2012, one prairie dog in the off-site holding facility was euthanized due to 

extreme weight loss. Full necropsy was performed. Tissues were fixed in 10% neutral 

buffered formalin, processed by routine paraffin histology, sectioned, and stained with 

hematoxylin–eosin for histopathologic evaluation.

Thin-section electron microscopy (EM) was performed on formalin fixed paraffin embedded 

tissue. A punch biopsy was taken directly from the paraffin block and deparaffinized in 

xylene. The tissue was fixed in glutaraldehyde, post-fixed in osmium tetroxide, and en block 

stained with uranyl acetate. A graded alcohol series and acetone were used to dehydrate and 

infiltrate the tissue, respectively, prior to eponaraldite resin exchanges (Mollenhauer, 1964). 

Following the final resin exchange, resin infiltrated tissue was placed in a 60 °C oven to 

polymerize overnight. Ultrathin sections were cut and stained with uranyl acetate and lead 

citrate prior to examination at the transmission electron microscope (Tecnai Spirit, FEI, 

Hillsboro, OR).

2.3. Pathogen detection

IFA was performed on index case tissues using rabbit antibody raised against culture-grown 

trophozoites of Giardia duodenalis and commercially prepared goat anti rabbit Ig 

conjugated with fluorescene isethionate (FITC) (Visvesvara and Healey, 1984). 

Deparaffinized tissue sections were flooded with a 1:200 dilution of the rabbit anti-Giardia 

duodenalis antibody, incubated at 37 °C for 30 min, washed three times with PBS (pH 7.2), 

flooded with a 1:1000 dilution of the FITC-goat anti Ig, and incubated at 37 °C for 30 min 

as above. The sections were washed thrice as above, mounted with anti-fade reagent, 

coverslipped, examined and photographed using an Olympus BX60 fluorescence 

microscope. Appropriate positive and negative control tissue sections were tested in parallel.

DNA was isolated from stool specimens from off-site animals using the FastDNA spin kit 

for soil (MP Biomedicals) following the manufacturer’s protocol and stored at −20 °C until 

further analysis. A multi-locus genotyping method was used to detect and identify Giardia 

spp. by amplifying the triosephosphate isomerase (tpi), glutamate dehydrogenase (gdh), and 

β-giardin (bg) gene targets from isolated DNA (Caccio et al., 2008; Ye et al., 2014). The 

internal transcribed spacer (ITS) region of E. bieneusi and 18S rRNA gene of 

Cryptosporidium were used for molecular analyses of these organisms as previously 

described (Ye et al., 2014). Stringent protocols and controls were used in all PCR assays to 

prevent and to detect contamination.
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PCR products were purified using Montage PCR filters (Millipore, Billerica, MA) prior to 

direct sequencing. Amplicons were bi-directionally sequenced using the secondary reaction 

primers with Big Dye terminator chemistries (Applied Biosystems, Foster City, CA) and run 

on an ABI 3130xl/Genetic Analyzer (Applied Biosystems). Complementary sequences were 

assembled and verified in ChromasPro 1.5 (Technelysium Pty Ltd). Alignments with 

reference sequences were completed using MEGA 5.1 (Tamura et al., 2011) and Geneious 

(BioMatters). Consensus neighbor-joining phylogenetic trees were developed using the 

Kimura 2 parameter model with 100 bootstrap replicates in MEGA 5.1.

Formalin-preserved feces from vivarium animals were screened for Giardia cysts and 

Cryptosporidium oocysts using the MERIFLUOR immunoflourescent assay (Meridian 

BioScience, Inc., Cincinnati, Ohio, USA). Fecal samples were concentrated into fecal pellets 

using a formalin-ethyl acetate stool concentration technique (Weber et al., 1992) and 

resuspended in a concentration of 1 g of feces to 1 mL of PBS. Each fecal sample was 

evaluated by screening 10 μL of the 1 g/mL solution of concentrated feces which was evenly 

distributed across the slide to ensure appropriate visibility during florescent microscopy 

(Salzer et al., 2007). This method was validated by spiking negative fecal samples with 

known quantities of Cryptosporidium oocysts and Giardia cysts (Salzer et al., 2007). 

Statistical methods included Fisher’s Exact tests to assess differences in shedding between 

weight, hair loss, and overall health classifications.

3. Results

Necropsy findings for the index case included alopecia and ulcerative pododermatitis. The 

gastrointestinal tract was grossly unremarkable. Histopathologic examination revealed 

lymphoplasmacytic inflammation in the small and large intestines, without overt mucosal 

epithelial damage. Lining the mucosal epithelial surface and mixed with luminal debris were 

multiple 10–15 μm, round to pyriform or crescent-shaped trophozoites containing a thin wall 

and one or two deeply basophilic nuclei, consistent with Giardia trophozoites (Fig. 1A and 

C).

Transmission electron microscopy revealed organisms with morphology consistent with 

Giardia spp. Multiple organisms were present within the prairie dog’s gastrointestinal tract. 

Organisms measured 6–10 μm and contained two nuclei, flagella, and a ventral disk (Fig. 2).

In the IFA assay the Giardia trophozoites reacted intensely with the anti-Giardia duodenalis 

antibody and produced bright green fluorescence (Fig. 1B). At higher magnifications 

characteristic features of G. duodenalis trophozoites that included a ventral disk (VD), two 

nuclei (N), and ventral flagella (VFl) were visualized (Fig. 1D).

Individual stools from all 29 animals tested from the off-site facility were positive for 

Giardia by PCR. Using the tpi (GenBank accession numbers: KP780949–KP780976), bg 

(GenBank accession numbers: KP780895–KP780924), and gdh (GenBank accession 

numbers KP780925–KP780948) gene targets for Giardia, G. duodenalis assemblage A (n = 

19), assemblage B (n = 6), and mixed infections with assemblages A and B (n = 4) were 

detected in animals (Table 1). There was no difference in assemblages between animals 

from different collection years or housing group at time of sampling. A multi-locus 
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genotyping approach could not resolve the subassemblage in several animals because of 

incongruent phylogenies (Fig. 3). Analysis of concatenated sequences from assemblage A 

animals revealed further characterization into subassemblage AI, with a large group of 

samples comprising a single clade (Fig. 3). Additionally, a novel subtype, A1/A5-like, based 

on the gdh gene was identified that contained a single nucleotide polymorphism (SNP; T 

substitution for C) at nucleotide 621; this SNP was identified in 16 animals. The six 

assemblage B sequences were identical at all loci. Following treatment with two rounds of 

50 mg of Fenbendazole (on food once a day for 5 days with a 7-day rest between treatment 

rounds), two animals were still positive for Giardia, with one having a different infecting 

assemblage after the treatment, indicating a previous co-infection or a re-infection with a 

new genotype (Table 1).

Animals from the 2011 collection group (14 of 17) were positive for E. bieneusi, while no 

animals from other collection years were positive for the microsporidian species (Table 1; 

GenBank accession numbers KP780977–KP780990). Using the ITS sequence, a novel E. 

bieneusi genotype, named “Row,” was identified in all positive animals. The Row genotype 

shared 97.5% sequence similarity with reference sequences AF101198 (B/human), 

AF101197 (A/human), and AY237220 (WL12/beaver otter) in Group 1 (Fig. 4). No animals 

were positive for Cryptosporidium by PCR.

Using fluorescent microscopy we identified Giardia cysts in 24 of the 60 (40%) fecal 

samples collected from animals housed in the on-site vivarium facility. In animals from the 

2011 collection (room A) group, 67% (22 of 33) were positive compared to 7% (2 of 27) 

from the 2009 animals (room B). No significant associations between Giardia infection and 

weight loss, hair loss, or overall health were found (data not shown). All animals were 

negative for the presence of Cryptosporidium oocysts.

4. Discussion

Animals sampled from both 2009 and 2011 collection times were found to be positive for G. 

duodenalis. The zoonotic assemblages A and B were identified in both collection year and 

all housing groups, indicating prairie dogs are susceptible to multiple genotypes of G. 

duodenalis as well as the potential for multiple infection sources in the population. These 

findings are different from previous studies that identified assemblage A as the only subtype 

found in wild and captive prairie dogs (Appelbee et al., 2005; van Keulen et al., 2002). A 

new subtype at the gdh gene target of assemblage A-infected animals further indicated that 

G. duodenalis may be established in some prairie dogs as the subtype has not been detected 

previously (Feng and Xiao, 2011).

In addition to the detection of G. duodenalis, a novel genotype of E. bieneusi was identified 

in animals in the 2011 collection group only. Enterocytozoon bieneusi is an obligately 

intracellular parasite in a diverse fungal group identified as Microsporidia. While E. bieneusi 

has been found in a number of wildlife, livestock, and human surveillance studies, its 

zoonotic potential and epidemiology are not fully understood (Widmer and Akiyoshi, 2010). 

Studies of the ITS region have shown significant host-specificity, with over 200 genotypes 

being known (Fayer and Santin-Duran, 2014; Santin and Fayer, 2011; Widmer and 
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Akiyoshi, 2010). This information, taken with the novel E. bieneusi Row genotype 

identified in the CDC prairie dogs, suggests that it may be a prairie dog-specific genotype 

that was likely endemic in the 2011 animals from Texas.

The introduction and transmission of G. duodenalis into the prairie dog colony was likely 

influenced by several factors. Firstly, G. duodenalis and E. bieneusi were likely endemic in 

animals from one or both Texas collection sites. In addition to the novel subassemblage and 

genotype evidence, two Giardia positive 2009 animals did not have contact with animals 

from the 2011 collection year. These animals were likely naturally infected with G. 

duodenalis prior to arrival at the animal facilities. Secondly, wild-captured animals are 

known to become stressed when first introduced to a captive setting. While great care is 

taken to reduce stress at animal care facilities, decreases in immune responses have been 

noted that can lead to both increased susceptibility to pathogens and increased shedding of 

endemic pathogens (Morgan and Tromborg, 2007; Thompson et al., 2005). Lastly, 

transmission was likely occurring within the facility as evidenced by some animals that 

tested positive with different G. duodenalis assemblages post-treatment compared to the 

initial screening.

The novel G. duodenalis subtype and E. bieneusi genotype indicated as endemic pathogens 

highlight the gaps in prairie dog parasite population studies. Despite its broad host range, 

giardiasis has rarely been reported for wild or captive prairie dogs, and no reports of E. 

bieneusi infections exist in this species. In one case report from Korea, a captive prairie dog 

in a colony with high morbidity and mortality was found to have profuse Giardia 

trophozoites throughout the duodenum and jejunum (Cho et al., 2005). Because the prairie 

dog is considered a keystone species and often exists at the human-wildlife interface, further 

characterization of this species’ endemic parasites would be beneficial to ecosystem 

conservation efforts and one health studies (Kotliar et al., 1999; Morse et al., 2012).
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Fig. 1. 
Microscopic evaluation of H&E and indirect immunofluorescent stained lumen section from 

index case. (A and C) Ten to fifteen micrometers, crescent-shaped trophozoites, consistent 

with Giardia spp. line the intestinal mucosal surface. (B) Giardia trophozoites reacted 

intensely with the anti-Giardia duodenalis antibody and produced bright green fluorescence 

(original magnification 25×). (D) Characteristic features of G. duodenalis trophozoites that 

included a ventral disk (VD), two nuclei (N) and ventral flagella (VFl) were visualized 

(original magnification 100×).
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Fig. 2. 
Thin-section electron microscopy of Giardia spp. A single Giardia organism containing two 

nuclei (N), basal bodies of flagella (arrowhead) and a ventral disk (arrow). Scale bar 

corresponds to 500 nm.
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Fig. 3. 
Consensus neighbor-joining phylogenetic tree of Giardia duodenalis. Phylogenetic tree of 

(a) tpi (b) gdh (c) bg gene targets and (inset) concatenated sequences at all targets for 

assemblage A samples in a laboratory colony of prairie dogs using the Kimura-2 parameter 

model with 100 bootstrap replicates in MEGA 5.1.
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Fig. 4. 
Consensus neighbor-joining phylogenetic tree of Enterocytozoon bieneusi. Phylogenetic tree 

of internal transcribed spacer (ITS) region in a laboratory colony of prairie dogs using the 

Kimura-2 parameter model with 100 bootstrap replicates in MEGA 5.1.
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